Fastbooks Incidentally Supports R

R and ggplot!
r
jupyter
ggplot
Published

September 9, 2020

Pleasant Surprise

While trying to test the boundaries of what fastpages actually supports, I figured I’d try out installing and setting up an R Notebook as well. Luckily enough, it does indeed support compiling and building R kernels as well.

The first step will be to install an R kernel for the notebook which can be done using:

conda install -c r r-essentials

This can be ran either from inside a notebook by prepending a ! in a cell such as !conda install -c r r-essentials or simply run it at the console if you’re in linux and in the project directory.

This is mostly an exibition post about how this can be done so we’re just going to show off some R stuff.

# I miss this selecting over Python's Pandas:
mtcars[order(mtcars$gear, mtcars$mpg), ]
mpg cyl disp hp drat wt qsec vs am gear carb
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
mtcars[order(mtcars$gear, mtcars$mpg), ] %>%
    ggplot(aes(disp, hp, colour = cyl)) + 
    geom_point()

crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)

# Equivalent to crimes %>% tidyr::pivot_longer(Murder:Rape)
 vars <- lapply(names(crimes)[-1], function(j) {
data.frame(state = crimes$state, variable = j, value = crimes[[j]])
})
crimes_long <- do.call("rbind", vars)

states_map <- map_data("state")
ggplot(crimes_long, aes(map_id = state)) +
    geom_map(aes(fill = value), map = states_map) +
    expand_limits(x = states_map$long, y = states_map$lat) +
    facet_wrap( ~ variable)

I did also try to use ggvis as well but it just wont display properly so that’s unfortunately out.